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Effects of long-ranged interactions on the nucleation dynamics in ap® model
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It is known that long-ranged interactions can play an important role in determining the dynamics of nucle-
ation at a first-order phase transition. For example, in a recent Letter by the present HellysrsRev. Lett.
74, 3848(1995] it was shown that during the annealing of an amorphous thin film, long-ranged interactions
generated by strains due to elastic misfits could be responsible for the system becoming trapped in a metastable
secondary crystalline phase. In this paper we consider these long-ranged interactions in a more general context
wherein only symmetry considerations are invoked to determine if a particular interaction potential is allowed.
Their effects on a first-order phase transition, as described by a single-component¢scatardel, are
examined. These transitions are studied by means of Langevin simulations. We find, through the evaluation of
the time evolution of the order parameter, the morphology of the steady state, and the time-dependent structure
factor, that the precise form of the long-ranged interaction has a strong influence on the nature of nucleation
dynamics, as well as on the steady-state proffl64063-651X96)09408-1

PACS numbd(s): 64.60.Cn, 64.70.Dv

[. INTRODUCTION layed as the system needs to wait for thermal fluctuations of
the length scaleR. to occur. However, once a critical
When a system initially in thermal equilibrium is nucleus is formed and begins to grow, the effective bias field
quenched into a metastable state, by a change in some extés- increased(see beloy, reducingR; and aiding further
nal control parameter such as the temperature, it equilibratgducleation and growth. This feedback mechanism leads to a
via the nucleation of the new stable phase. There is a consharp transition to the stable phase.
petition between the lowering of the free energy with the Because of the long-ranged nature of strain interactions,
formation of the stable phase and the energy expense due tee energy penalty for elastic misfits is proportional to the
the interfaces that necessarily arise between regions of the&lume of the transformed phase. Littlewood and Chandra
metastable phase and the newly formed stable phase. B#us included these interactions in their model free energy in
cause of this energy balance, a nucleus generated by thernal mean-field manner, which corresponds to the infinite-
fluctuations must exceed a certain critical size in order tganged limit,
grow. In many instances this process is well described by A similar interaction of this type has also been considered
classical nucleation theoffyi]. by Fisher[5] in the different context of a charge-density
In an interesting series of papers Littlewood and Chandravave(CDW) pinned by impurities. In this case, the coupling
[2,3] showed that the dynamics of nucleation can be stronglppetween the local CDW phaség;} represents the elasticity
affected by the presence of long-ranged interactions, as ari¢f the charge-density wave that favors a uniform phase.
ing, for example, from strain misfits of inhomogeneousFisher studied a time-dependent mean-field theory of the
phases. Their considerations were motivated by the experproblem, in which each local phagk is coupled to¢, the
ments of McWharet al. [4] on barium titanatBaTiO3;),  average phase over the whole system. In other words, the
whereby a pulsed electric field was used to cross thénteractions between the phases are again approximated by
paraelectric (PE)—ferroelectric (FE) phase boundary. an infinite-range model.
McWhanet al. observed a time delay in the rise of the spon- More recently, the present authd®] showed that long-
taneous polarization after the onset of the electric field, inditanged interactions, as generated by elastic misfits of inho-
cating a delay in the nucleation of the ferroelectric phasenogeneous crystalline phases, are crucial in understanding
after field quenching. This behavior is not described by clasthe effects of rapid thermal annealing on the crystallization
sical nucleation theory, which predicts a smooth transformaef lead zirconate titanatéPZT) thin films. For PZT, apart
tion to the FE phase without delay. In the actual experimentsrom the ferroelectric perovskite phase, which is in fact the
the delay in nucleation was six orders of magnitude largetrue ground state, there exists also a secondary metastable
than the characteristic transformation time according to clasdefect-pyrochlore phase. The competition between the two
sical theory{3]. Littlewood and Chandra suggested that thiscrystalline phases is enhanced by long-ranged elastic strains,
phenomenon may be associated with long-ranged strain irwith the consequence that the steady state reached after a
teractions. Since the PE phase of Bafikas a cubic crystal heat treatment of the amorphous PZT film depends strongly
structure, while the FE phase is tetragonal, spontaneous pon the initial heating ratg7]. In particular, for slow heating,
larization implies a spontaneous strain. The strong couplings in conventional furnace annealing, long-ranged forces are
between the strain and polarization order parameters acts tesponsible for the system being trapped in the metastable
suppress the effect of the external electric field. Initially, defect-pyrochlore phase. Similar behaviors have also been
therefore, the critical siz&. required for the growth of a observed in lead iron niobate thin filni8].
nucleus of the stable phase is very large. Nucleation is de- In this paper we investigate, via a Landau theory and
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utilizing Langevin simulations, the dynamics of crystal jugate, permitting a cubic term in the free-energy expansion.
nucleation and growth when long-ranged interactions aré-or simple cubic and fcc crystals, to obtain a free energy that
present. Here, such interactions are, as in the aforementionegscribes a first order transitiph2], one must therefore in-
studies, included in a mean-field manner. However, morelude terms up to sixth order. In the present investigation, we
general forms of the interactions, which fulfill system- focus on a “2-4-6" local potential, appropriate for these two
specific symmetry requirements, will be considered. Wecrystal structures. More specifically, we have studied a
demonstrate how the specific form of the long-ranged intercoarse-grained free energgiready scaledgiven by
actions can influence the steady state of a model system for L 1 1 K
}/(\;Zlﬁg it:;r(seme(;(cljsetls&a doubly degenerate ground state, as is f[d)]:zi §a¢i2_ Z¢i4+ E‘biGJF §|V¢i|2 TV,

Our paper is organized as follows. In Sec. Il a description (2.2
of the Landau free energy that we have studied will be given, ) ) ) ) )
together with a discussion of the physical meaning of thevhere the index denotes discrete sites onla<L lattice.
Order parameter and the Symmetry requirements of 0uTh|S IS app|lcab|e to the Cl’ystalllzatlon Of a th|n film from the
model system. The principal numerical results will be pre-2morphous phase.

sented in Sec. IIl, followed by a summary of the physically ~—Another motivation for studying this potential is as fol-
relevant conclusions in Sec. IV. lows. Our local Landau free energy employs a single-

component, scalar order parameter. In the case of

Fl{dit1=F[{— ¢i}], this is the simplest phenomenological

theory by which we can study symmetry-breaking first-order
In constructing a phenomenological Landau free energyransitions.

that describes any particular phase transition, one is con- In the free energy Eq2.2), a squared gradient term, with

strained in that it must be consistent with the symmetries oK being constant, is included to account for the energy cost

the system of concern. In a Landau theory of solidificationof a spatially inhomogeneous order parameter. The last term

and crystal nucleatiof—11], the free energy can be written in Eq. (2.2) represents a long-ranged interaction and is given

as an expansion in the coefficients of the Fourier componentdy the general form

of the solid phase densit,:

Il. MODEL

I
Vintzzz Bij ;- (2.3
]
;L‘:Eq aq¢q¢_q+q1q22q3 q,,0,.95%a, Pa, P, . o _ .
e In this equation] is a coupling constant, whilsn andn are
X 8(Qy+ 0ot s)+ - -, (2.1  integers. The symmetry[{¢;}]=F[{— ¢;}] leads to the
constraint thatm+n must be even.
where theg;’s are reciprocal lattice vectors of the solid. Be-  For the coupling parameted;; in Eq. (2.3) we have con-
cause of rotational symmetry, the coefficierg depend only  sidered
on the magnitudedq;|. As explained by Alexander and
McTague[9] and Shihet al.[11], near a phase transition the

coefficientsag, ag, q,,q, --- Will have minima at some whered; is the Kronecker delta. The secofmbnstank term

wave vectofQ| so that the free energ§ may be truncated in this definition signifies an infinite-ranged interaction and

to include only a single set of nonzero reciprocal lattice vecits magnitude ensures that the free enefgis properly ex-

tors of equal length. The dominant set is generally the smalliensive. Sincev,, represents some generalized strain energy

est nonzero sdfl1]. Furthermore, in order to obtain a solid dye to elastic misfits, its value should be zero in the homo-

with the correct point-group symmetry, all the magnitudes ofgeneous system, i.e., whém} = ¢ for all i. The 5 term is

the Fourier components belonging to the dominant set mushcluded in Eq.(2.4) to this effect. That this is so can be

be identical, i.e..¢q = ¢q. Hence the free energy can be made apparent by substituting E8.4) in Eq. (2.3) to obtain

expanded in a single order parametks. The powers of

¢q that appear in the expansion can be deduced by consid-

ering geometrically whether it is possible to construct, with

the wave vectors);, a closed polyrangléwhich may be o

nonplanay with the corresponding number of sides. For thewhere ™= (1/L?)3; 4" is the spatial average ofith power

bcc crystal, for example, one must consifi@r11] a free-  of the order parameter. In the homogeneous casg,2).is

energy expansion consisting of quadratic, cubic, and fourthidentically zero.

order terms. In the present study we limit ourselves to the study of
In the cases of the simple cubic and fcc crystals, howevem=n. In this case Eq(2.3) can be rewritten in the form

both cubic and fifth-order terms are absent in such an expan-

sion. Only even powers are allowed. Physically, this is be- V. _I—E (qS”—ﬁ)z 2.6

cause the conjugates of these two lattices, which correspond it 24 i ' '

to a change in the sign abg, are identical to the lattices

themselves, differing only by a simple translation. Symmetrywhich forn=1 represents exactly the same mean-field long-

of the free energy thus excludes odd powers of the orderanged interactions considered by previous autf@®3,5,6.

parameter. The bcc crystal, however, is distinct from its conOf course, the local Landau potentials used in these other

Bij=&;— 12, (2.9

I -
Vin=5 LA™ "= (6871, 25
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V($) Bi(t+ O =pi(1)+ Ot) achi— ¢7+ $7H K (iva= 1)
—Ing (e~ BN | +V28t(1), 2.9
E
¢ /NP T\ %o
0 ¢ wherea is a nearest-neighbor lattice vector afift) satisfies

<§i(t)§j(t’)>ens: 65ij Oyt - (2.10
—Ey Here e is the scaled dimensionless temperature.
. SUMMARY OF RESULTS AND ANALYSIS

FIG. 1. Local potential in the Landau free energy E22). In In this section we present a summary of our extensive

terms of the parametera, ¢,=+(1++1—-4a)/2 and numerical results obtained from Langevin simulations. Rep-
Eg/Ew={—1+6a+(1-4a)¥3/{1-6a+(1-4a)¥3. The po- resentative data are found for simulations performed on a
tential shown corresponds #o=0.135 788, for whictEg /Ey= 3. 128x 128 lattice with periodic boundary conditions. For the
free energy EQ.(2.2) we have chosen the parameter
studies are different from that being considered here. In thig=0.135 788, for which the ratio of the energy barrier to the
paper we will demonstrate that a1 interaction leads to a €nergy minimum of the local potential Bg/E= 1/4 (Fig.
very different nucleation and growth behavior than for1). In what follows, all references to the energy barigy
n=0 (i.e., absence of long-ranged interaclionn=2; more  correspond to this particular value af
generally, an oda leads to a very different behavior thanan ~ Since we wish to primarily address the issue of crystalli-
evenn. zation from an amorphous phase we have focused on initial
We focus on the case where the paramatér Eq. (2.2 conditions in which the whole system is localized in the
lies in the range &a<3/16, for which the local on-site central energy minimum, i.e{¢;}=0 for alli. In a previous
potential has a metastable local minimum¢at 0, and two  Study of a similar model, Valls and Mazenkb3] have con-
degenerate global minima located at=+ ¢, (Fig. 1).  sidered initial conditions given by a random distribution of
Physically, the central minimum corresponds to the amorthe order parametefss;}. We have also applied these initial
phous phase, while the global minima at nonzérepresent conditions in our present system, even though they are not
the crystalline solid. Because of the energy baifigr in the ~ Physically relevant in the present context. For either of these
absence of thermal fluctuations a system initially localized irconditions, the system is allowed to evolve according to
the metastable state will remain trapped in this state. Thef-angevin dynamics, as given by Ed2.9) and(2.10), with
mal fluctuations, therefore, play an important role in the dy-the temperature being fixed at a constant vaiuélere we
namical evolution towards steady state. Such dynamics capote that the random initial conditions lead to similar inter-

be generated according to a Langevin equation mediate and late-time dynamics as the first type of initial
conditions.
S, SF Starting with the initial state of#;}=0 and averaging
5 r 50 + 7, (2.7 over 20 runs we obtained the dynamical evolutions shown in
I

Figs. 4a) and 2b). For these simulations the coupling con-
stant of the squared gradient term is chosen tdKbe6Eg
wherel is a kinetic coefficient andy; is a Gaussian thermal and a temperature of=0.5Eg is used, withEg being the
noise with zero mean satisfying the ensemble average  energy barrier in the absence of long-ranged forces. Figure
2(a) indicates a rapid initial rise in the root mean square

(mi(1) 7;(t"))ens= 2Tk T G5 S(t—t"). (2.8)  order parameten/( $?)/ ¢, from the starting value of zero,
both in the absence and presence of long-ranged forces. This
Simulations are performed by averaging over a number ofransient behavior corresponds to the initial thermalization
runs, each of which constitutes a different sequence of thabout¢$=_0, which does not involve overcoming any energy
random thermal noise. In Eq2.8) the ensemble average barrier. The early stages that follow immediately are gov-
( YensSignifies a combination of averaging over separate runsrned by the activation over the energy barrier separating the
and over the entire lattice. In the following averages ovemmetastable state and the global minima. The figure demon-
runs will be represented bly), while averages over the lat- strates a delay in nucleation of the stable phase when long-
tice will be denoted by an overba?. ranged interactions are present, as reported in previous stud-
Equation(2.7) may be solved numerically by the Euler ies [2,3,6l. Figure 2b) shows a different average
method[13,14]. In this algorithm time is discretized into M=(|¢|)/ . This quantity is computed by first averaging
steps of the sizeft. We have usedt=0.1 and found that the order parametelid;} over the lattice for each run, then
this time step gives numerically converged results. Substitutevaluating its absolute value, followed by an average over
ing the free energy[ ¢], as given by Eq(2.2), into the separate runs. The behavior for zero and2 long-ranged
Langevin equation Eq.2.7) and rescaling the variables ap- forces is very similar, in that the long-time averages are
propriately, we obtain small. In fact, from these results, together with simulations
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_FIG. 2. Time evolution of average&) V(¢?) ¢y and (b)
(|p|)/ ¢y obtained for n=0 (—), n=1 (--), and n=2
(= --) long-ranged interactions. These data correspond to
a=0.135788,K=6Eg, ande=0.5Eg. For bothn=1 andn=2,
the strength of the long-ranged interaction #s2Eg .

FIG. 3. Evolution of the{¢;} configuration obtained for the

on 32x 32 and 64 64 lattices, we find that in the limit of an n=1 long-ranged interaction, with the same parameters as used in
infinite lattice size, the long-time averagk! approaches Fig. 2. The occupation of the three local minima is presented by the
zero for these two types of interactions. However, the behavshading of the pixels as follows: blackvE — ¢o), gray (¢=0),
ior for n=1 interactions is qualitatively different. In this and white =+ ¢).
case a long-time average @# approaching 1 is obtained.
Combined with the root mean square averages, these resuls, and substituting in Eq2.2), we obtain
indicate that fom=1 a single domain consisting entirely of
either the positive or negative phase is obtained at long
times, while for the other two cases the steady state is a
mixed positive and negative phase.

Figure 3 shows the evolution of the order parameter conin which the on-site potential is given by
figuration{ ¢;} obtained for a typical run for the=1 inter- _
action. In the figure, the occupation of the three potential Vi=—lgdi+ 2 (at)dp?— 1 ¢+ L 4?, (3.2

wells centred ong=— ¢q, 0, and + ¢, are indicated by
v y &9

F=> vi+§|v¢>i|2, (3.1

black, gray, and white pixels, respectively. Initially, nuclei of
both the positive and negative phases are formed. At long
times, however, the system evolves into a single phase. The
long-time configurations obtained for the zero ane2
long-ranged interactions are shown in Fig&)4nd 4b) (we
find no finite-size effects in this result, at least for lattices as
large as 256x 256, the largest we have studjedhe figures
show that the steady-state morphology ifier 2 interactions
is indeed very similar to that for the absence of long-ranged . ‘
interactions G=0), both corresponding to a mixed state
with coexisting domains of the two degenerate low-energy @) )
phases.

These late time results may be understood by examining FIG. 4. Typical late-time{¢;} configurations obtained for
how the long-ranged contribution modifies the local potentiale; /E,,= 1, K=6Eg, and (a) n=0 (at t=2000) and(b) n=2,
in the Landau free energy Eq2.2). For n=1, expanding |=2Eg (att=6000).
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For n=2 the on-site potential becomes

@ | V() —
Vi=3(a-20¢) i~ i (1-20)i+ 547, (33
,{"’\‘\ l In this case the long-ranged term renormalizes the coeffi-
—1 ANPZZN - s cients of the second and fourth powers\ip. Unlike the
A A\ ] n=1 case, there is no additional first-order term. Because the
y ‘\f\ ,17 structure of the on-site potential is unchanged from that
A when long-ranged interactions are abdéfig. 5b)], in that

- the two global minima remain degenerate, the steady state is
again a mixed phase, the same asrfer0.

In general, for an odd value of in Eq. (2.6), the long-
ranged interaction generates the odd-power ter#isp]' in
the Landau free energy. In the event of thermal fluctuations
causinge”, thenth moment of the order parameter, to devi-
ate from zero, such additional terms lift the degeneracy of
¢ the local potential. In this case, it is expected that the system
will evolve towards a single phase, as observedrferl.
However, for any evem, all additional terms comprise of
even powers of the order parameter. Therefore, the symmetry
of the local potential is always preserved and a mixed phase
is expected.

FIG. 5. Local potential modified in the presence@fn=1 and Another quantity of interedtl5], one that provides quan-
(b) n=2 long-ranged interactions. If&), the curves correspond to titative information of characteristic domain sizes, is the

$=0 (—), 0.5(— ), ande, (- - -), while in (b), $2=0 (—), 0.25  time-dependent structure facts(k,t). This quantity is de-
(- -, and ¢ (- - ). fined as

2
in the free energy. The long-ranged contribution thus renor- S(k't):<’ Lzzi e Mgy (1) — (1) > /¢§
malizes the second-order term of the on-site potential. In
addition, it generates a first-order term that is equivalent to = (b ), (3.9
an effective bias field whose magnitude is proportional to the
spatial average of the order parameter. Figu@® Bepicts where
the modified on-site potential, for the values of the param-
eters that we have used+£0.135 788 and=2Eg). In this
case, if the mean order parametkis zero, then the on-site
potential has an increased energy barrier. This accounts for
the delayed formation of critical nuclei of the stable phase. Iris the Fourier transform of the deviation @ from the av-
the event that the random thermal fluctuations drive the average over the whole lattice. We compute the circularly av-

erageq to a nonzero value, the resulting effective bias fielderaged structure factor, which is given by
will tilt the on-site potential so that the double degeneracy of

where we have dropped a term that pertains to a global shift 1 —

1 ) _
$=22 expik-n)gO-d(Olgo (39

the global minima is lifted, as shown in the figure. Moreover, Z/S(k,t)

the energy barrier is lowered in the direction of the tilt, thus S(k,t)= K , (3.6)
aiding further transitions to the low-energy phase. This effect S

can be seen in thég;} configurations shown in Fig. 3. In n

this particular example, fluctuations first produce an excess

of the positive stable phase over the negative one. It is apvhere the summations are overk such that
parent from the figure that nucleation and growth of thek— /L <(k:+kj)><k+ /L. The time evolution of this
negative phase is suppressed, due to the effective bias. @uantity is plotted in Fig. 6, fon=0, 1, and 2, as obtained
the other hand, nucleation of the positive phase is enhancetiom the same sets of simulation that give the average order
Eventually, the domains of the negative phase are swalloweparameters in Fig. 2. Fro(k,t), the correlation function

up completely by the dominant positive phase. One mighC(r,t) can be calculated by taking its inverse Fourier trans-
guestion whether this steady-state morphology is a finite-sizéorm. A further circular average leads to the radial correla-
effect, incurred because fluctuations do not produce exactlijon functionC(r) shown in Fig. 7.

equal amounts of the positive and negative phases in a finite In Fig. 7, for the cases af=0 and 2, the plots show that
system. However, the nature of the effective bias field in Eqthere is a monotonic increase in the spatial correlation
(3.2 is that even for an infinitesimal excess of one phaseC(r) with time. Forn=1 interaction, however, a different
over the other, the degeneracy of the potential is lifted, leadbehavior is observed. It appears from the figure that although
ing to broken symmetry. In our simulations of up to the amplitude ofC(r) increases with time initially, the trend
256X 256 lattices for then=1 interaction, a single phase is is reversed at long times. Quite simply, for this case, since
always obtained at long times. the system has fully evolved into a single phase and the
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FIG. 6. Time evolution of the circularly averaged structure fac-  FIG. 7. Evolution of the radial correlation functio@(r) for
tor S(k), obtained forn=0, n=1 (I=2Eg), andn=2 (I=2Eg) n=0, 1, and 2 interactions. The symbols in this figure correspond
interactions. exactly to those of Fig. 6.

energy barrier to escape the global minimum is so mucilo not observe any regime characterized by the coarsening of
larger than the temperature, we fin€ér) andS(k) indica- ~ domains, for which a growth exponent=; is expected
tive of a harmonic system with strong intersite coupling. 1t[17,18. Clearly, these results deserve further analytical and
should be noted that it is the amplitude®fr), the correla- Numerical study.

tion of the fluctuations of the order parameter from the av-

erage, that exhibits a decrease with time and not its spatial IV. CONCLUSION

extent. Utilizing Langevin simulations we have studied the dy-
A further investigation of the dynamics of the nucleation . 9 gev . Y
namics of nucleation and growth as described by a single-

and growth process is provided by a calculation of the char-

6 . . _
acteristic length scale or domain size of the system. We degomponent scalap’ model with the addition of long-ranged

fine this as the inverse of the first moment of the circularly'meracuons' Physically, the 2-4-6 local potential that we
averaged structure factpt6], which is given by

(4.}

>kS(k,t)
Ky(t)= = 3.7

;”S(k,t) ’ 4_

with the summation being truncatedlat 7. The character-
istic length scale is theR(t) =1/ (t). A plot of In(R) vs 3
In(t) is shown in Fig. 8 for intermediate and late times. Very

similar behavior is found fon=0, 1, and 2, irrespective of

whether the final state is a single or mixed phase. In all three 2
cases there is a regime of rapid increaseRofvith time, 5
representing the nucleation and growth of the stable phases.

This is followed by a very weak power-law behavior,

R~t", corresponding to the smoothing of domain boundaries FIG. 8. IR vs Int, whereR is the characteristic length scale, for
and a swallowing up of any subcritical nuclei. However, wen=0, 1, and 2.
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have examined is appropriate as a description of the crystaphase or a mixed phase consisting of two degenerate ordered
lization of simple cubic or fcc thin films from the amorphous domains of the crystalline phase is obtained.

phase. A general form for the long-ranged interaction, con-

IS|stenf[ with the symmetry Qf these two crystal structures, is ACKNOWLEDGMENTS
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