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It is known that long-ranged interactions can play an important role in determining the dynamics of nucle-
ation at a first-order phase transition. For example, in a recent Letter by the present authors@Phys. Rev. Lett.
74, 3848~1995!# it was shown that during the annealing of an amorphous thin film, long-ranged interactions
generated by strains due to elastic misfits could be responsible for the system becoming trapped in a metastable
secondary crystalline phase. In this paper we consider these long-ranged interactions in a more general context
wherein only symmetry considerations are invoked to determine if a particular interaction potential is allowed.
Their effects on a first-order phase transition, as described by a single-component scalarf6 model, are
examined. These transitions are studied by means of Langevin simulations. We find, through the evaluation of
the time evolution of the order parameter, the morphology of the steady state, and the time-dependent structure
factor, that the precise form of the long-ranged interaction has a strong influence on the nature of nucleation
dynamics, as well as on the steady-state profiles.@S1063-651X~96!09408-1#

PACS number~s!: 64.60.Cn, 64.70.Dv

I. INTRODUCTION

When a system initially in thermal equilibrium is
quenched into a metastable state, by a change in some exter-
nal control parameter such as the temperature, it equilibrates
via the nucleation of the new stable phase. There is a com-
petition between the lowering of the free energy with the
formation of the stable phase and the energy expense due to
the interfaces that necessarily arise between regions of the
metastable phase and the newly formed stable phase. Be-
cause of this energy balance, a nucleus generated by thermal
fluctuations must exceed a certain critical size in order to
grow. In many instances this process is well described by
classical nucleation theory@1#.

In an interesting series of papers Littlewood and Chandra
@2,3# showed that the dynamics of nucleation can be strongly
affected by the presence of long-ranged interactions, as aris-
ing, for example, from strain misfits of inhomogeneous
phases. Their considerations were motivated by the experi-
ments of McWhanet al. @4# on barium titanate~BaTiO3),
whereby a pulsed electric field was used to cross the
paraelectric ~PE!–ferroelectric ~FE! phase boundary.
McWhanet al.observed a time delay in the rise of the spon-
taneous polarization after the onset of the electric field, indi-
cating a delay in the nucleation of the ferroelectric phase
after field quenching. This behavior is not described by clas-
sical nucleation theory, which predicts a smooth transforma-
tion to the FE phase without delay. In the actual experiments,
the delay in nucleation was six orders of magnitude larger
than the characteristic transformation time according to clas-
sical theory@3#. Littlewood and Chandra suggested that this
phenomenon may be associated with long-ranged strain in-
teractions. Since the PE phase of BaTiO3 has a cubic crystal
structure, while the FE phase is tetragonal, spontaneous po-
larization implies a spontaneous strain. The strong coupling
between the strain and polarization order parameters acts to
suppress the effect of the external electric field. Initially,
therefore, the critical sizeRc required for the growth of a
nucleus of the stable phase is very large. Nucleation is de-

layed as the system needs to wait for thermal fluctuations of
the length scaleRc to occur. However, once a critical
nucleus is formed and begins to grow, the effective bias field
is increased~see below!, reducingRc and aiding further
nucleation and growth. This feedback mechanism leads to a
sharp transition to the stable phase.

Because of the long-ranged nature of strain interactions,
the energy penalty for elastic misfits is proportional to the
volume of the transformed phase. Littlewood and Chandra
thus included these interactions in their model free energy in
a mean-field manner, which corresponds to the infinite-
ranged limit.

A similar interaction of this type has also been considered
by Fisher @5# in the different context of a charge-density
wave~CDW! pinned by impurities. In this case, the coupling
between the local CDW phases$f i% represents the elasticity
of the charge-density wave that favors a uniform phase.
Fisher studied a time-dependent mean-field theory of the
problem, in which each local phasef i is coupled tof, the
average phase over the whole system. In other words, the
interactions between the phases are again approximated by
an infinite-range model.

More recently, the present authors@6# showed that long-
ranged interactions, as generated by elastic misfits of inho-
mogeneous crystalline phases, are crucial in understanding
the effects of rapid thermal annealing on the crystallization
of lead zirconate titanate~PZT! thin films. For PZT, apart
from the ferroelectric perovskite phase, which is in fact the
true ground state, there exists also a secondary metastable
defect-pyrochlore phase. The competition between the two
crystalline phases is enhanced by long-ranged elastic strains,
with the consequence that the steady state reached after a
heat treatment of the amorphous PZT film depends strongly
on the initial heating rate@7#. In particular, for slow heating,
as in conventional furnace annealing, long-ranged forces are
responsible for the system being trapped in the metastable
defect-pyrochlore phase. Similar behaviors have also been
observed in lead iron niobate thin films@8#.

In this paper we investigate, via a Landau theory and
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utilizing Langevin simulations, the dynamics of crystal
nucleation and growth when long-ranged interactions are
present. Here, such interactions are, as in the aforementioned
studies, included in a mean-field manner. However, more
general forms of the interactions, which fulfill system-
specific symmetry requirements, will be considered. We
demonstrate how the specific form of the long-ranged inter-
actions can influence the steady state of a model system for
which there exists a doubly degenerate ground state, as is
found inf6 models.

Our paper is organized as follows. In Sec. II a description
of the Landau free energy that we have studied will be given,
together with a discussion of the physical meaning of the
order parameter and the symmetry requirements of our
model system. The principal numerical results will be pre-
sented in Sec. III, followed by a summary of the physically
relevant conclusions in Sec. IV.

II. MODEL

In constructing a phenomenological Landau free energy
that describes any particular phase transition, one is con-
strained in that it must be consistent with the symmetries of
the system of concern. In a Landau theory of solidification
and crystal nucleation@9–11#, the free energy can be written
as an expansion in the coefficients of the Fourier components
of the solid phase densityfq :

F5(
q
aqfqf2q1 (

q1 ,q2 ,q3
aq1 ,q2 ,q3fq1

fq2
fq3

3d~q11q21q3!1•••, ~2.1!

where theqi ’s are reciprocal lattice vectors of the solid. Be-
cause of rotational symmetry, the coefficienta’s depend only
on the magnitudesuqi u. As explained by Alexander and
McTague@9# and Shihet al. @11#, near a phase transition the
coefficientsaq , aq1 ,q2 ,q3, . . . will have minima at some

wave vectoruQu so that the free energyF may be truncated
to include only a single set of nonzero reciprocal lattice vec-
tors of equal length. The dominant set is generally the small-
est nonzero set@11#. Furthermore, in order to obtain a solid
with the correct point-group symmetry, all the magnitudes of
the Fourier components belonging to the dominant set must
be identical, i.e.,fQi

5fQ . Hence the free energy can be

expanded in a single order parameterfQ . The powers of
fQ that appear in the expansion can be deduced by consid-
ering geometrically whether it is possible to construct, with
the wave vectorsQi , a closed polyrangle~which may be
nonplanar! with the corresponding number of sides. For the
bcc crystal, for example, one must consider@9–11# a free-
energy expansion consisting of quadratic, cubic, and fourth-
order terms.

In the cases of the simple cubic and fcc crystals, however,
both cubic and fifth-order terms are absent in such an expan-
sion. Only even powers are allowed. Physically, this is be-
cause the conjugates of these two lattices, which correspond
to a change in the sign offQ , are identical to the lattices
themselves, differing only by a simple translation. Symmetry
of the free energy thus excludes odd powers of the order
parameter. The bcc crystal, however, is distinct from its con-

jugate, permitting a cubic term in the free-energy expansion.
For simple cubic and fcc crystals, to obtain a free energy that
describes a first order transition@12#, one must therefore in-
clude terms up to sixth order. In the present investigation, we
focus on a ‘‘2-4-6’’ local potential, appropriate for these two
crystal structures. More specifically, we have studied a
coarse-grained free energy~already scaled! given by

F@f#5(
i

H 12 af i
22

1

4
f i
41

1

6
f i
61

K

2
u¹f i u2J 1Vint ,

~2.2!

where the indexi denotes discrete sites on aL3L lattice.
This is applicable to the crystallization of a thin film from the
amorphous phase.

Another motivation for studying this potential is as fol-
lows. Our local Landau free energy employs a single-
component, scalar order parameter. In the case of
F@$f i%#5F@$2f i%#, this is the simplest phenomenological
theory by which we can study symmetry-breaking first-order
transitions.

In the free energy Eq.~2.2!, a squared gradient term, with
K being constant, is included to account for the energy cost
of a spatially inhomogeneous order parameter. The last term
in Eq. ~2.2! represents a long-ranged interaction and is given
by the general form

Vint5
l

2(i , j b i jf i
mf j

n . ~2.3!

In this equation,l is a coupling constant, whilem andn are
integers. The symmetryF@$f i%#5F@$2f i%# leads to the
constraint thatm1n must be even.

For the coupling parameterb i j in Eq. ~2.3! we have con-
sidered

b i j5d i j21/L2, ~2.4!

whered i j is the Kronecker delta. The second~constant! term
in this definition signifies an infinite-ranged interaction and
its magnitude ensures that the free energyF is properly ex-
tensive. SinceVint represents some generalized strain energy
due to elastic misfits, its value should be zero in the homo-
geneous system, i.e., when$f i%5f for all i . Thed i j term is
included in Eq.~2.4! to this effect. That this is so can be
made apparent by substituting Eq.~2.4! in Eq. ~2.3! to obtain

Vint5
l

2
L2@fm1n2~fm!~fn!#, ~2.5!

wherefm5(1/L2)( if i
m is the spatial average ofmth power

of the order parameter. In the homogeneous case, Eq.~2.5! is
identically zero.

In the present study we limit ourselves to the study of
m5n. In this case Eq.~2.3! can be rewritten in the form

Vint5
l

2(i ~f i
n2fn!2, ~2.6!

which for n51 represents exactly the same mean-field long-
ranged interactions considered by previous authors@2,3,5,6#.
Of course, the local Landau potentials used in these other
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studies are different from that being considered here. In this
paper we will demonstrate that ann51 interaction leads to a
very different nucleation and growth behavior than for
n50 ~i.e., absence of long-ranged interaction! or n52; more
generally, an oddn leads to a very different behavior than an
evenn.

We focus on the case where the parametera in Eq. ~2.2!
lies in the range 0,a,3/16, for which the local on-site
potential has a metastable local minimum atf50, and two
degenerate global minima located atf56f0 ~Fig. 1!.
Physically, the central minimum corresponds to the amor-
phous phase, while the global minima at nonzerof represent
the crystalline solid. Because of the energy barrierEB , in the
absence of thermal fluctuations a system initially localized in
the metastable state will remain trapped in this state. Ther-
mal fluctuations, therefore, play an important role in the dy-
namical evolution towards steady state. Such dynamics can
be generated according to a Langevin equation

df i

dt
52G

dF
df i

1h i , ~2.7!

whereG is a kinetic coefficient andh i is a Gaussian thermal
noise with zero mean satisfying the ensemble average

^h i~ t !h j~ t8!&ens52GkBTd i jd~ t2t8!. ~2.8!

Simulations are performed by averaging over a number of
runs, each of which constitutes a different sequence of the
random thermal noise. In Eq.~2.8! the ensemble average
^ &enssignifies a combination of averaging over separate runs
and over the entire lattice. In the following averages over
runs will be represented bŷ&, while averages over the lat-
tice will be denoted by an overbarO.

Equation~2.7! may be solved numerically by the Euler
method @13,14#. In this algorithm time is discretized into
steps of the sizedt. We have useddt50.1 and found that
this time step gives numerically converged results. Substitut-
ing the free energyF@f#, as given by Eq.~2.2!, into the
Langevin equation Eq.~2.7! and rescaling the variables ap-
propriately, we obtain

f i~ t1dt !5f i~ t !1dtH af i2f i
31f i

51K(
a

~f i1a2f i !

2 lnf i
n21~f i

n2fn!J 1A2dtj i~ t !, ~2.9!

wherea is a nearest-neighbor lattice vector andj i(t) satisfies

^j i~ t !j j~ t8!&ens5ed i jd tt8. ~2.10!

Heree is the scaled dimensionless temperature.

III. SUMMARY OF RESULTS AND ANALYSIS

In this section we present a summary of our extensive
numerical results obtained from Langevin simulations. Rep-
resentative data are found for simulations performed on a
1283128 lattice with periodic boundary conditions. For the
free energy Eq. ~2.2! we have chosen the parameter
a50.135 788, for which the ratio of the energy barrier to the
energy minimum of the local potential isEB /EW51/4 ~Fig.
1!. In what follows, all references to the energy barrierEB
correspond to this particular value ofa.

Since we wish to primarily address the issue of crystalli-
zation from an amorphous phase we have focused on initial
conditions in which the whole system is localized in the
central energy minimum, i.e.,$f i%50 for all i . In a previous
study of a similar model, Valls and Mazenko@13# have con-
sidered initial conditions given by a random distribution of
the order parameters$f i%. We have also applied these initial
conditions in our present system, even though they are not
physically relevant in the present context. For either of these
conditions, the system is allowed to evolve according to
Langevin dynamics, as given by Eqs.~2.9! and ~2.10!, with
the temperature being fixed at a constant valuee. Here we
note that the random initial conditions lead to similar inter-
mediate and late-time dynamics as the first type of initial
conditions.

Starting with the initial state of$f i%50 and averaging
over 20 runs we obtained the dynamical evolutions shown in
Figs. 2~a! and 2~b!. For these simulations the coupling con-
stant of the squared gradient term is chosen to beK56EB
and a temperature ofe50.5EB is used, withEB being the
energy barrier in the absence of long-ranged forces. Figure
2~a! indicates a rapid initial rise in the root mean square

order parameterA^f2&/f0 from the starting value of zero,
both in the absence and presence of long-ranged forces. This
transient behavior corresponds to the initial thermalization
aboutf50, which does not involve overcoming any energy
barrier. The early stages that follow immediately are gov-
erned by the activation over the energy barrier separating the
metastable state and the global minima. The figure demon-
strates a delay in nucleation of the stable phase when long-
ranged interactions are present, as reported in previous stud-
ies @2,3,6#. Figure 2~b! shows a different average
M5^uf̄u&/f0. This quantity is computed by first averaging
the order parameter$f i% over the lattice for each run, then
evaluating its absolute value, followed by an average over
separate runs. The behavior for zero andn52 long-ranged
forces is very similar, in that the long-time averages are
small. In fact, from these results, together with simulations

FIG. 1. Local potential in the Landau free energy Eq.~2.2!. In

terms of the parameter a, f05A(11A124a)/2 and
EB /EW5$2116a1(124a)3/2%/$126a1(124a)3/2%. The po-
tential shown corresponds toa50.135 788, for whichEB /EW5

1
4.
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on 32332 and 64364 lattices, we find that in the limit of an
infinite lattice size, the long-time averageM approaches
zero for these two types of interactions. However, the behav-
ior for n51 interactions is qualitatively different. In this
case a long-time average ofM approaching 1 is obtained.
Combined with the root mean square averages, these results
indicate that forn51 a single domain consisting entirely of
either the positive or negative phase is obtained at long
times, while for the other two cases the steady state is a
mixed positive and negative phase.

Figure 3 shows the evolution of the order parameter con-
figuration$f i% obtained for a typical run for then51 inter-
action. In the figure, the occupation of the three potential
wells centred onf52f0, 0, and1f0 are indicated by
black, gray, and white pixels, respectively. Initially, nuclei of
both the positive and negative phases are formed. At long
times, however, the system evolves into a single phase. The
long-time configurations obtained for the zero andn52
long-ranged interactions are shown in Figs. 4~a! and 4~b! ~we
find no finite-size effects in this result, at least for lattices as
large as 2563 256, the largest we have studied!. The figures
show that the steady-state morphology forn52 interactions
is indeed very similar to that for the absence of long-ranged
interactions (n50), both corresponding to a mixed state
with coexisting domains of the two degenerate low-energy
phases.

These late time results may be understood by examining
how the long-ranged contribution modifies the local potential
in the Landau free energy Eq.~2.2!. For n51, expanding

Vint and substituting in Eq.~2.2!, we obtain

F5(
i
Vi1

K

2
u¹f i u2, ~3.1!

in which the on-site potential is given by

Vi52 l f̄f i1
1
2 ~a1 l !f i

22 1
4 f i

41 1
6 f i

6 , ~3.2!

FIG. 2. Time evolution of averages~a! A^f2&/f0 and ~b!

^uf̄u&/f0 obtained for n50 ~—!, n51 ~– –!, and n52
~– - –! long-ranged interactions. These data correspond to
a50.135 788,K56EB , ande50.5EB . For bothn51 andn52,
the strength of the long-ranged interaction isl52EB .

FIG. 3. Evolution of the$f i% configuration obtained for the
n51 long-ranged interaction, with the same parameters as used in
Fig. 2. The occupation of the three local minima is presented by the
shading of the pixels as follows: black (f52f0), gray (f50),
and white (f51f0).

FIG. 4. Typical late-time$f i% configurations obtained for
EB /EW5

1
4, K56EB , and ~a! n50 ~at t52000) and~b! n52,

l52EB ~at t56000).
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where we have dropped a term that pertains to a global shift
in the free energy. The long-ranged contribution thus renor-
malizes the second-order term of the on-site potential. In
addition, it generates a first-order term that is equivalent to
an effective bias field whose magnitude is proportional to the
spatial average of the order parameter. Figure 5~a! depicts
the modified on-site potential, for the values of the param-
eters that we have used (a50.135 788 andl52EB). In this
case, if the mean order parameterf̄ is zero, then the on-site
potential has an increased energy barrier. This accounts for
the delayed formation of critical nuclei of the stable phase. In
the event that the random thermal fluctuations drive the av-
eragef̄ to a nonzero value, the resulting effective bias field
will tilt the on-site potential so that the double degeneracy of
the global minima is lifted, as shown in the figure. Moreover,
the energy barrier is lowered in the direction of the tilt, thus
aiding further transitions to the low-energy phase. This effect
can be seen in the$f i% configurations shown in Fig. 3. In
this particular example, fluctuations first produce an excess
of the positive stable phase over the negative one. It is ap-
parent from the figure that nucleation and growth of the
negative phase is suppressed, due to the effective bias. On
the other hand, nucleation of the positive phase is enhanced.
Eventually, the domains of the negative phase are swallowed
up completely by the dominant positive phase. One might
question whether this steady-state morphology is a finite-size
effect, incurred because fluctuations do not produce exactly
equal amounts of the positive and negative phases in a finite
system. However, the nature of the effective bias field in Eq.
~3.2! is that even for an infinitesimal excess of one phase
over the other, the degeneracy of the potential is lifted, lead-
ing to broken symmetry. In our simulations of up to
2563256 lattices for then51 interaction, a single phase is
always obtained at long times.

For n52 the on-site potential becomes

Vi5
1
2 ~a22lf2!f i

22 1
4 ~122l !f i

41 1
6 f i

6 . ~3.3!

In this case the long-ranged term renormalizes the coeffi-
cients of the second and fourth powers inVi . Unlike the
n51 case, there is no additional first-order term. Because the
structure of the on-site potential is unchanged from that
when long-ranged interactions are absent@Fig. 5~b!#, in that
the two global minima remain degenerate, the steady state is
again a mixed phase, the same as forn50.

In general, for an odd value ofn in Eq. ~2.6!, the long-
ranged interaction generates the odd-power termslfnf i

n in
the Landau free energy. In the event of thermal fluctuations
causingfn, thenth moment of the order parameter, to devi-
ate from zero, such additional terms lift the degeneracy of
the local potential. In this case, it is expected that the system
will evolve towards a single phase, as observed forn51.
However, for any evenn, all additional terms comprise of
even powers of the order parameter. Therefore, the symmetry
of the local potential is always preserved and a mixed phase
is expected.

Another quantity of interest@15#, one that provides quan-
titative information of characteristic domain sizes, is the
time-dependent structure factorS(k,t). This quantity is de-
fined as

S~k,t !5K U 1L2(i eik•r i@f i~ t !2f̄~ t !#U2L Yf0
2

5^fkfk* &, ~3.4!

where

fk5
1

L2(i exp~ ik•r i !@f i~ t !2f̄~ t !#/f0 ~3.5!

is the Fourier transform of the deviation off i from the av-
erage over the whole lattice. We compute the circularly av-
eraged structure factor, which is given by

S~k,t !5
(
k

8S~k,t !

(
k

81
, ~3.6!

where the summations are overk such that
k2p/L,(kx

21ky
2)1/2<k1p/L. The time evolution of this

quantity is plotted in Fig. 6, forn50, 1, and 2, as obtained
from the same sets of simulation that give the average order
parameters in Fig. 2. FromS(k,t), the correlation function
C(r ,t) can be calculated by taking its inverse Fourier trans-
form. A further circular average leads to the radial correla-
tion functionC(r ) shown in Fig. 7.

In Fig. 7, for the cases ofn50 and 2, the plots show that
there is a monotonic increase in the spatial correlation
C(r ) with time. Forn51 interaction, however, a different
behavior is observed. It appears from the figure that although
the amplitude ofC(r ) increases with time initially, the trend
is reversed at long times. Quite simply, for this case, since
the system has fully evolved into a single phase and the

FIG. 5. Local potential modified in the presence of~a! n51 and
~b! n52 long-ranged interactions. In~a!, the curves correspond to
f̄50 ~—!, 0.5~– –!, andf0 ~– - –!, while in ~b!, f250 ~—!, 0.25
~– –!, andf0

2 ~– - –!.
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energy barrier to escape the global minimum is so much
larger than the temperature, we find aC(r ) andS(k) indica-
tive of a harmonic system with strong intersite coupling. It
should be noted that it is the amplitude ofC(r ), the correla-
tion of the fluctuations of the order parameter from the av-
erage, that exhibits a decrease with time and not its spatial
extent.

A further investigation of the dynamics of the nucleation
and growth process is provided by a calculation of the char-
acteristic length scale or domain size of the system. We de-
fine this as the inverse of the first moment of the circularly
averaged structure factor@16#, which is given by

k1~ t !5
(
k

9kS~k,t !

(
k

9S~k,t !
, ~3.7!

with the summation being truncated atk5p. The character-
istic length scale is thenR(t)51/k1(t). A plot of ln(R) vs
ln(t) is shown in Fig. 8 for intermediate and late times. Very
similar behavior is found forn50, 1, and 2, irrespective of
whether the final state is a single or mixed phase. In all three
cases there is a regime of rapid increase ofR with time,
representing the nucleation and growth of the stable phases.
This is followed by a very weak power-law behavior,
R;tn, corresponding to the smoothing of domain boundaries
and a swallowing up of any subcritical nuclei. However, we

do not observe any regime characterized by the coarsening of
domains, for which a growth exponentn5 1

2 is expected
@17,18#. Clearly, these results deserve further analytical and
numerical study.

IV. CONCLUSION

Utilizing Langevin simulations we have studied the dy-
namics of nucleation and growth as described by a single-
component scalarf6 model with the addition of long-ranged
interactions. Physically, the 2-4-6 local potential that we

FIG. 6. Time evolution of the circularly averaged structure fac-
tor S(k), obtained forn50, n51 (l52EB), andn52 (l52EB)
interactions.

FIG. 7. Evolution of the radial correlation functionC(r ) for
n50, 1, and 2 interactions. The symbols in this figure correspond
exactly to those of Fig. 6.

FIG. 8. lnR vs lnt, whereR is the characteristic length scale, for
n50, 1, and 2.
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have examined is appropriate as a description of the crystal-
lization of simple cubic or fcc thin films from the amorphous
phase. A general form for the long-ranged interaction, con-
sistent with the symmetry of these two crystal structures, is
investigated. Such interactions may be generated by strains
due to elastic misfits in the crystallized film. We find that the
precise form of the long-ranged interactions has a strong in-
fluence on the steady-state profiles, as in whether a pure

phase or a mixed phase consisting of two degenerate ordered
domains of the crystalline phase is obtained.
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